Product Code Database
Example Keywords: xbox -robots $96
barcode-scavenger
   » » Wiki: Struve Function
Tag Wiki 'Struve Function'.
Tag
In , the Struve functions , are solutions of the non-homogeneous Bessel's differential equation:

x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \left (x^2 - \alpha^2 \right )y = \frac{4\left (\frac{x}{2}\right)^{\alpha+1}}{\sqrt{\pi}\Gamma \left (\alpha+\frac{1}{2} \right )}

introduced by . The α is the order of the Struve function, and is often an integer.

And further defined its second-kind version \mathbf{K}_\alpha(x) as \mathbf{K}_\alpha(x)=\mathbf{H}_\alpha(x)-Y_\alpha(x), where Y_\alpha(x) is the .

The modified Struve functions are equal to and are solutions of the non-homogeneous Bessel's differential equation:

x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - \left (x^2 + \alpha^2 \right )y = \frac{4\left (\frac{x}{2}\right)^{\alpha+1}}{\sqrt{\pi}\Gamma \left (\alpha+\frac{1}{2} \right )}

And further defined its second-kind version \mathbf{M}_\alpha(x) as \mathbf{M}_\alpha(x)=\mathbf{L}_\alpha(x)-I_\alpha(x), where I_\alpha(x) is the .


Definitions
Since this is a non-homogeneous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogeneous solutions are the , and the particular solution may be chosen as the corresponding Struve function.


Power series expansion
Struve functions, denoted as have the form

\mathbf{H}_\alpha(z) = \sum_{m=0}^\infty \frac{(-1)^m}{\Gamma \left (m+\frac{3}{2} \right ) \Gamma \left (m+\alpha+\frac{3}{2} \right )} \left({\frac{z}{2}}\right)^{2m+\alpha+1},

where is the .

The modified Struve functions, denoted , have the following power series form

\mathbf{L}_\alpha(z) = \sum_{m=0}^\infty \frac{1}{\Gamma \left (m+\frac{3}{2} \right ) \Gamma \left (m+\alpha+\frac{3}{2} \right )} \left(\frac{z}{2}\right)^{2m+\alpha+1}.


Integral form
Another definition of the Struve function, for values of satisfying , is possible expressing in term of the Poisson's integral representation:

\mathbf{H}_\alpha(x)=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^1(1-t^2)^{\alpha-\frac{1}{2}}\sin xt~dt=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\frac{\pi}{2}\sin(x\cos\tau)\sin^{2\alpha}\tau~d\tau=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\frac{\pi}{2}\sin(x\sin\tau)\cos^{2\alpha}\tau~d\tau

\mathbf{K}_\alpha(x)=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\infty(1+t^2)^{\alpha-\frac{1}{2}}e^{-xt}~dt=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\infty e^{-x\sinh\tau}\cosh^{2\alpha}\tau~d\tau

\mathbf{L}_\alpha(x)=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^1(1-t^2)^{\alpha-\frac{1}{2}}\sinh xt~dt=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\frac{\pi}{2}\sinh(x\cos\tau)\sin^{2\alpha}\tau~d\tau=\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\frac{\pi}{2}\sinh(x\sin\tau)\cos^{2\alpha}\tau~d\tau

\mathbf{M}_\alpha(x)=-\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^1(1-t^2)^{\alpha-\frac{1}{2}}e^{-xt}~dt=-\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\frac{\pi}{2}e^{-x\cos\tau}\sin^{2\alpha}\tau~d\tau=-\frac{2\left(\frac{x}{2}\right)^\alpha}{\sqrt\pi\Gamma\left(\alpha+\frac{1}{2}\right)}\int_0^\frac{\pi}{2}e^{-x\sin\tau}\cos^{2\alpha}\tau~d\tau


Asymptotic forms
For small , the power is given above.

For large , one obtains:

\mathbf{H}_\alpha(x) - Y_\alpha(x) = \frac{\left(\frac{x}{2}\right)^{\alpha-1}}{\sqrt{\pi} \Gamma \left (\alpha+\frac{1}{2} \right )} + O\left(\left (\tfrac{x}{2}\right)^{\alpha-3}\right),

where is the .


Properties
The Struve functions satisfy the following recurrence relations:

\begin{align}
\mathbf{H}_{\alpha -1}(x) + \mathbf{H}_{\alpha+1}(x) &= \frac{2\alpha}{x} \mathbf{H}_\alpha (x) + \frac{\left (\frac{x}{2}\right)^{\alpha}}{\sqrt{\pi}\Gamma \left (\alpha + \frac{3}{2} \right )}, \\ \mathbf{H}_{\alpha -1}(x) - \mathbf{H}_{\alpha+1}(x) &= 2 \frac{d}{dx} \left (\mathbf{H}_\alpha(x) \right) - \frac{ \left( \frac{x}{2} \right)^\alpha}{\sqrt{\pi}\Gamma \left (\alpha + \frac{3}{2} \right )}. \end{align}


Relation to other functions
Struve functions of integer order can be expressed in terms of and vice versa: if is a non-negative integer then

\begin{align}
\mathbf{E}_n(z) &= \frac{1}{\pi} \sum_{k=0}^{\left \lfloor \frac{n-1}{2} \right \rfloor} \frac{\Gamma \left (k+ \frac{1}{2} \right) \left (\frac{z}{2} \right )^{n-2k-1}}{\Gamma \left (n- k + \frac{1}{2}\right )} -\mathbf{H}_n(z),\\ \mathbf{E}_{-n}(z) &= \frac{(-1)^{n+1}}{\pi}\sum_{k=0}^{\left \lceil \frac{n-3}{2} \right \rceil} \frac{\Gamma(n-k-\frac{1}{2}) \left (\frac{z}{2} \right )^{-n+2k+1}}{\Gamma \left (k+ \frac{3}{2} \right)}-\mathbf{H}_{-n}(z). \end{align}

Struve functions of order where is an integer can be expressed in terms of elementary functions. In particular if is a non-negative integer then

\mathbf{H}_{-n-\frac{1}{2}} (z) = (-1)^n J_{n+\frac{1}{2}}(z),

where the right hand side is a spherical Bessel function.

Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function :

\mathbf{H}_{\alpha}(z) = \frac{z^{\alpha+1}}{2^{\alpha}\sqrt{\pi} \Gamma \left (\alpha+\tfrac{3}{2} \right )} {}_1F_2 \left (1;\tfrac{3}{2}, \alpha+\tfrac{3}{2};-\tfrac{z^2}{4} \right ).


Applications
The Struve and Weber functions were shown to have an application to in.,K. Buchanan, C. Flores, S. Wheeland, J. Jensen, D. Grayson and G. Huff, "Transmit beamforming for radar applications using circularly tapered random arrays," 2017 IEEE Radar Conference (RadarConf), 2017, pp. 0112-0117, doi: 10.1109/RADAR.2017.7944181 and in describing the effect of confining interface on of colloidal particles at low Reynolds numbers.B. U. Felderhof, "Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion." The Journal of Physical Chemistry B 109.45, 2005, pp. 21406-21412


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time